Unlock the power of numbers
Mathematics Degree
Students in Anderson University’s mathematics degree program are taught how to solve problems and see how mathematics changes the way we look at the world. As they progress through the major, they learn complex calculations and the theorems behind them.
Tomorrow's problem solvers are starting right here.
Mathematics is the language of the universe—master it with a mathematics degree and shape the future.
As a mathematics degree student, you dive passionately into the beauty and intricacy of numbers, patterns, and logic. Driven by a deep curiosity to understand how the universe works, you explore everything from the smallest equations to the grandest theorems. Every formula you learn and problem you solve feels like unlocking a new layer of understanding, connecting abstract ideas to the real world in profound ways.
With a love for critical thinking and exploration, you push through challenges, finding joy in unraveling complex problems that others might shy away from. Mathematics becomes not just a subject, but a language through which you can see and shape the world, opening the door to limitless possibilities in research, technology, and innovation. You can solve problems, create solutions, and change the world. It all starts with a mathematics degree.
EXPLORE THE MATHEMATICS DEGREE
A mathematics degree student engages with the abstract and practical applications of mathematical concepts. They study various topics, including calculus, algebra, statistics, and discrete mathematics, developing strong analytical and problem-solving skills. Students in the mathematics degree program learn to think critically, approach complex problems methodically, and apply mathematical theories to real-world scenarios in fields like finance, engineering, computer science, and data analysis. Their coursework often emphasizes logical reasoning, quantitative analysis, and mathematical modeling.
Degree Pathways
AU offers two degrees in mathematics.
- BA in Mathematics
- BS in Mathematics
- Both can be completed in as little as three years.
Mathematics Facilities
Located on the third floor of Decker Hall, the AU Department of Mathematics is an open and inviting space. Four faculty offices open into a common area with whiteboard walls. All who pass through can see mathematics being done.
Decker 338 is a classroom that has been specially designed for mathematics courses. Distinctive features include floor-to-ceiling whiteboard walls and easily movable furniture. Tables in the room provide ample space for notebooks, textbooks, and a laptop. The versatile nature of the furniture allows the room to be transformed to accommodate lectures with 35 students, students working in groups, and smaller seminar-based courses.
Decker 330 serves as the department’s mathematics lab. This room is used for tutoring, seminar space, and a place where students can work on projects together.
Classes
- Calculus I, II, & III
- Linear Algebra
- Problem Seminar
For the BA mathematics degree, there are 30 hours of required coursework with additional courses in mathematics. These are chosen to complement the student’s mathematics interests and objectives through consultation with the student’s department advisor. View the courses required for the BA in Mathematics. For the BS degree, there are 47 hours of required coursework, including courses in physics, chemistry, and programming, and prepares students for graduate-level study. View the courses required for the BS in Mathematics.
Careers
- Biomathematics
- Education
- Operations Research
- Actuarial Science
- Finance
- Mathematical Modeling
- Statistics
Mathematics Student Research
The Anderson University Department of Mathematics offers a unique, hands-on research experience. Undergraduate mathematics degree students work alongside faculty to conduct original research in mathematics. This exciting research into new mathematics is presented in a variety of venues, and has included poster sessions and invited talks at other universities. Opportunities such as these advance our knowledge about God’s creation and develop skills that are essential for students furthering their studies at the graduate level.
Here are samples of the projects that are currently underway. If you have difficulty accessing the information in the below PDF files, please contact us.
Adventures in the Quantum Polynomial Ring: Linear Algebra Computations in C Abstract
- The p-polynomials appear as the elements of transition matrices used to convert a special class of bases to the standard basis within the quantum polynomial ring. We examined computational methods for generating p-polynomials. An algorithm for finding a p-polynomial has been known; however, the implementation of this algorithm was not sufficiently fast. Through algorithmic analysis, a change in the implementation language, and the adoption of matrix-based algorithms, significant improvements in speed were realized. Optimization of this process has led to a speedup of over 140,000 times.
- Linear Algebra Computations in C Research Project [PDF]
Adventures in the Quantum Polynomial Ring: Patterns in the p-Polynomials Abstract
- The p-polynomials appear as the elements of transition matrices used to convert a special class of bases to the standard basis within the quantum polynomial ring. The purpose of this study is to analyze these polynomials for patterns and eventually catalog these newly generated p-polynomials for future analysis. The initial strategy for finding these patterns will take advantage of generalized rules from the modified R-polynomials and Kazhdan-Lusztig polynomials. Additional strategies arise by observing new patterns from the list of computer-generated polynomials. We also examine a special class of p-polynomials that are generated by the longest word in the symmetric group and describe patterns in the coefficients of these polynomials.
- Patterns in the p-Polynomials [PDF]
On the Creation of Rank Two Centrosymmetric Matrices
- For any square matrix B, we can create a centrosymmetric matrix A = B+JBJ where J is the skew identity matrix. If the matrix B is created as the outer product of two vectors v and h, the resulting centrosymmetric matrix has a maximal rank of 2. However, not all such rank two matrices can be written in this form. In this work, we fully examine when a 3×3 centrosymmetric matrix can be created from two vectors and generalize our results to larger matrices.
- Creation of Rank Two Centrosymmetric Matrices [PDF]
Mathematics is more than numbers, it's a key to innovation.
Dr. Lee Van Groningen shares his passion for teaching math and discusses how the math department at Anderson University helps students succeed by fostering a supportive, engaging learning environment.
The Anderson You
You have unique interests and skills that set you apart. Explore the free My College Career Quiz to receive a personalized list of majors selected just for you. We’ve taken out the guessing work. Come find the Anderson you.